On Differential Structure for Projective Limits of Manifolds
نویسندگان
چکیده
We investigate the differential calculus defined by Ashtekar and Lewandowski on projective limits of manifolds by means of cylindrical smooth functions and compare it with the C calculus proposed by Fröhlicher and Kriegl in more general context. For products of connected manifolds, a Boman theorem is proved, showing the equivalence of the two calculi in this particular case. Several examples of projective limits of manifolds are discussed, arising in String Theory and in loop quantization of Gauge Theories.
منابع مشابه
Some recent work in Fréchet geometry
Some recent work in Fréchet geometry is briefly reviewed. In particular an earlier result on the structure of second tangent bundles in the finite dimensional case was extended to infinite dimensional Banach manifolds and Fréchet manifolds that could be represented as projective limits of Banach manifolds. This led to further results concerning the characterization of second tangent bundles and...
متن کاملConjugate connections and differential equations on infinite dimensional manifolds
On a smooth manifold M, the vector bundle structures of the second order tangent bundle, T M bijectively correspond to linear connections. In this paper we classify such structures for those Fréchet manifolds which can be considered as projective limits of Banach manifolds. We investigate also the relation between ordinary differential equations on Fréchet spaces and the linear connections on t...
متن کاملSecond order structures for sprays and connections on Fréchet manifolds
Ambrose, Palais and Singer [6] introduced the concept of second order structures on finite dimensional manifolds. Kumar and Viswanath [23] extended these results to the category of Banach manifolds. In the present paper all of these results are generalized to a large class of Fréchet manifolds. It is proved that the existence of Christoffel and Hessian structures, connections, sprays and dissec...
متن کاملStructure of a Parabolic Partial Differential Equation on Graphs and Digital spaces. Solution of PDE on Digital Spaces: a Klein Bottle, a Projective Plane, a 4D Sphere and a Moebius Band
This paper studies the structure of a parabolic partial differential equation on graphs and digital n-dimensional manifolds, which are digital models of continuous n-manifolds. Conditions for the existence of solutions of equations are determined and investigated. Numerical solutions of the equation on a Klein bottle, a projective plane, a 4D sphere and a Moebius strip are presented.
متن کاملPositive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
متن کامل